

October 8, 2021

Mr. Eric Lacy State Water Resources Control Board-Division of Drinking Water 850 Marina Bay Parkway, Building P, 2nd Floor Richmond, CA 94804

Re: September 2021 Monthly Report to the Office of Drinking Water La Honda Water System (County Service Area No. 7), No. W4100509

Dear Mr. Lacy:

Attached are the monitoring report, the Coliform Reporting Form, and the Monthly Summary of Monitoring for Surface Water Treatment Regulations for the La Honda Water System.

An updated Bacteriological Sample Siting Plan was submitted to bring the sampling plan into compliance with the current California Revised Total Coliform Rule. Per section 64423.1 paragraph C1, a system serving less 400 service connections or 1000 persons, is no longer required to submit a monthly summary of the bacteriological monitoring results. Accordingly, the Monthly Summary of Distribution System Coliform Monitoring will no longer be submitted. Coliform results can be found in the monitoring report and any positive results or repeats will be noted in the cover letter.

Disinfection Byproducts

The quarterly disinfection byproducts monitoring was completed and the TTHM running annual average of 57.3 ug/L was in compliance with its MCL of 80 ug/L and the HAA5 running annual average of 32.8 ug/L was in compliance with its MCL of 60 ug/L.

Chlorine residuals were maintained as required. Turbidity levels did not exceed 0.3 NTU when treating water for domestic use. The minimum disinfection CT ratio was 2.3 for a DDW required 1-log removal for Giardia.

Please do not hesitate to contact me if you have any questions.

Respectfully submitted, BRACEWELL ENGINEERING, INC.

Llog 1 Bracende

Lloyd W. Bracewell, PhD., RCE Water System Engineer

cc: San Mateo County, CSA #7 BEI Office

555 County	ter System (CS Center, 5th F1 29, CA 94063	WATER SYSTEM MO A No. 7) oor	Water R Divisio 850 Mar	esources Control n of Drinking Wa ina Bay Parkway, d, CA 98804	ater				
Station: Test: Units: Type: Frequency: Date	Finish Wtr FLOW gal/day calculated daily	Finish Wtr TEMP deg C grab weekly	Finish Wtr PH std units grab weekly	Finish Wtr CL2 RESID mg/L continuous daily	ContctPipe CT VALUE min-mg/L calculated daily	Finish Wtr CT REQUIRD min-mg/L calculated daily	ContctPipe CT RATIO ratio calculated daily	Finish Wtr TURBIDITY NTU continuous daily	Raw Water TURBIDITY NTU continuous daily
09/01/21 09/02/21 09/03/21 09/04/21 09/05/21 09/05/21	0 0 27250 27250 0 0	18.1 18.1	7.80 7.81	1.97 2.49	55.49 70.28	15.8 16.5	3.5 4.3	0.02 0.02	0.24 0.25
09/07/21 09/08/21 09/09/21 09/10/21 09/11/21 09/12/21	0 28500 28500 27550 27550 0	18.1 18.1 17.9 17.9	7.66 7.81 7.73 7.80	1.96 1.80 1.55 1.76	55.21 50.70 43.66 49.57	15.1 15.7 15.1 15.8	3.7 3.2 2.9 3.1	0.02 0.02 0.02 0.02 0.02	0.18 0.32 0.30 0.22
09/13/21 09/14/21 09/15/21	31600 31600 0	17.9 17.9	7.89 7.69	2.15 2.37	60.56 66.75	16.8 15.9	3.6 4.2	0.02 0.02	0.21 0.26
09/16/21 09/17/21 09/18/21 09/19/21 09/20/21	0 23700 0 0 0	17.4	7.52	2.46	69.29	15.6	4.4	0.02	0.20
09/21/21 09/22/21 09/23/21 09/24/21 09/25/21	0 12100 47900 17400 0	17.4 17.4 17.1	7.91 7.72 7.54	1.31 1.51 1.34	36.90 42.53 37.74	16.2 15.5 14.6	2.3 2.7 2.6	0.03 0.02 0.02	0.47 0.25 0.24
09/26/21 09/27/21 09/28/21 09/29/21 09/30/21	0 40300 40300 38600 38600	17.1 17.1 17.1 17.1 17.1	7.79 7.97 7.80 7.76	1.95 2.16 2.47 2.35	54.92 60.84 69.57 66.19	16.9 18.2 17.6 17.2	3.2 3.3 4.0 3.8	0.02 0.02 0.02 0.02 0.02	0.47 0.23 0.25 0.16
Average: High: Low: Total:	16290 47900 0 488700	17.6 18.1 17.1	7.76 7.97 7.52	1.98 2.49 1.31	55.64 70.28 36.90	16.2 18.2 14.6	3.4 4.4 2.3	0.02 0.03 0.02	0.27 0.47 0.16
Method:		SM2550B	SM4500-H+ B	SM4500-C1 G				SM2130B	SM2130B

Finish Wtr TRB/PH/CL2 initials calib check

week1y

KB

KB

KB

KB

mx d <= 0.3 0/16

mn d >= 1.00/16

Limit1: Over/Total:

10/07/21 08:53:28

Page 1

Ţ

mn d >= 0.20 0/16

La Honda W 555 County Redwood Ci System No.	ater System (C Center, 5th F ty, CA 94063 4100509	WATER SYSTEM SA No. 7) Toor	Wate	PORT er Resources Co ision of Drinki Marina Bay Par nmond, CA 98804	ntrol Board ng Water kway, Bldg P						
Station: Test: Units: Type: Frequency:	Raw Water SAMPL TYPE TYPE observation as needed	Raw Water COLIFORM MPN/100mL grab monthly	Raw Water E. COLI MPN/100mL grab monthly	APN 240070 SAMPL TYPE TYPE observation Mar/May/Oct	APN 240070 COLIFORM pres./abs. grab Mar/May/Oct	APN 240070 E. COLI pres./abs. grab Mar/May/Oct	APN 240070 CL2 RESID mg/L grab Mar/May/Oct	OldCl2Sta SAMPL TYPE TYPE observation Apr/Jun/Nov	OldCl2Sta COLIFORM pres./abs. grab Apr/Jun/Nov	OldCl2Sta E. COLI pres./abs. grab Apr/Jun/Nov	OldCl2Sta CL2 RESID mg/L grab Apr/Jun/Nov
Date 09/01/21 09/02/21 09/03/21 09/05/21 09/05/21 09/06/21 09/06/21 09/07/21 09/08/21 09/09/21 09/10/21 09/11/21 09/12/21 09/13/21				due 10/21	due 10/21	due 10/21	due 10/21	due 11/21	due 11/21	due 11/21	due 11/21
09/10/21 09/11/21 09/12/21 09/13/21 09/14/21 09/15/21 09/16/21 09/16/21 09/18/21 09/19/21 09/20/21 09/20/21 09/22/21 09/23/21 09/25/21 09/25/21 09/25/21 09/26/21 09/28/21 09/29/21 09/29/21	Other	365.4	42.8								
Average: High: Low:		365.4 365.4 365.4	42.8 42.8 42.8								
DL/RL: Method:		1.0/1.0 SM9223 B-18	1.0/1.0 SM9223 B-18		SM9223B-18	SM9223B-18	SM4500-C1 G		SM9223B-18	SM9223B-18	SM4500-C1 G
Limit1: Over/Total	:				mx d < 1 0/0	mx d < 1 0/0	mn d >= 0.05 0/0		mx d < 1 0/0	mx d < 1 0/0	mn d >= 0.05 0/0

10/07/21 08:53:28 P

Page 2

La Honda Wa 555 County Redwood Cit System No.	ter System (CS/ Center, 5th Flo y. CA 94063	A No. 7)	Divisio 850 Mar	esources Contro n of Drinking Wa ina Bay Parkway d, CA 98804	l Board ater , Bldg P					
Station: Test: Units: Type: Frequency: Date	251 PescCr SAMPL TYPE TYPE observation Jul/Dec	251 PescCr COLIFORM pres./abs. grab Jul/Dec	251 PescCr E. COLI pres./abs. grab Jul/Dec	251 PescCr CL2 RESID mg/L grab Jul/Dec	460 Pescdr SAMPL TYPE TYPE observation Jan/Aug	460 Pescdr COLIFORM pres./abs. grab Jan/Aug	460 Pescdr E. COLI pres./abs. grab Jan/Aug	460 Pescdr CL2 RESID mg/L grab Jan/Aug	Raw Water ALUMINUM ug/L grab every 12 mo	TreatedWtr ALUMINUM ug/L grab every 3 mo
09/01/21 09/02/21 09/03/21 09/03/21 09/06/21 09/06/21 09/06/21 09/08/21 09/09/21 09/10/21 09/10/21 09/12/21 09/13/21 09/13/21 09/15/21 09/15/21 09/15/21 09/15/21 09/15/21 09/16/21 09/17/21 09/19/21 09/22/21 09/22/21 09/22/21 09/25/21 09/25/21 09/26/21 09/26/21 09/27/21 09/28/21 09/29/21	due 12/21	due 12/21	due 12/21	due 12/21	due 01/22	due 01/22	due 01/22	due 01/22	due 07/22	due 11/21
Average: High: Low:										
DL/RL: Method:		SM9223B-18	SM9223B-18	SM4500-C1 G		SM9223B-18	SM9223B-18	SM4500-C1 G	10/5 EPA 200.8	10/5 EPA 200.8
Limitl: Over/Total:		mx d < 1 0/0	mx d < 1 0/0	mn d >= 0.05 0/0		mx d < 1 0/0	mx d < 1 0/0	mn d >= 0.05 0/0		

10/07/21 08:53:30 Page 3

555 County	ter System (CS Center, 5th F1 y, CA 94063 4100509	A No. 7)	Divisio 850 Mar	esources Contro n of Drinking W ina Bay Parkway d, CA 98804	ater			
Station: Test: Units: Type: Frequency: Date 09/01/21 09/03/21 09/03/21 09/05/21 09/06/21 09/06/21 09/08/21 09/08/21 09/09/21 09/10/21 09/11/21 09/13/21	400 Ranch SAMPL TYPE TYPE observation Feb/Sep	400 Ranch COLIFORM pres./abs. grab Feb/Sep	400 Ranch E. COLI pres./abs. grab Feb/Sep	400 Ranch CL2 RESID mg/L grab Feb/Sep	LaHondaRd SAMPL TYPE TYPE observation as needed	LaHondaRd COLIFORM pres./abs. grab as needed	LaHondaRd E. COLI pres./abs. grab as needed	LaHondaRd CL2 RESID mg/L grab as needed
09/14/21 09/15/21 09/16/21 09/17/21 09/18/21 09/20/21 09/20/21 09/22/21 09/22/21 09/22/21 09/23/21 09/25/21 09/26/21 09/26/21 09/28/21 09/28/21 09/29/21 09/30/21	Routine	Absence	Absence	1.45				
Average: High: Low:		0 0 0	0 0 0	1.45 1.45 1.45				
Method:		SM9223B-18	SM9223B-18	SM4500-C1 G		SM9223B-18	SM9223B-18	SM4500-C1 G
Limit1: Over/Total:		mx d < 1 0/1	mx d < 1 0/1	mn d >= 0.05 0/1		mx d < 1 0/0	mx d < 1 0/0	mn d >= 0.05 0/0

10/07/21 08:53:30

Page 4

555 County	ater System (CS Center, 5th Fl ty. CA 94063	WATER SYSTEM MO A No. 7) oor	Water R Divisio 850 Mar	esources Contro n of Drinking W ina Bay Parkway d, CA 98804	ater		
Station: Test: Units: Type: Frequency: Date	LHW OPERATOR units observation as needed	LHW ACTIONS comments observation as needed	Raw Water PH std units grab weekly	Raw Water ALKALINITY mg/L-CaCO3 grab as needed	Raw Water IRON ug/L grab every 3 mo	TreatedWtr IRON ug/L grab every 3 mo	Raw Water NITRATE-N mg/L grab every 3 mo
09/01/21 09/02/21 09/03/21 09/04/21 09/05/21 09/06/21 09/06/21	KB KB				due 11/21	due 11/21	due 10/21
09/08/21 09/09/21 09/10/21 09/11/21	KB KB KB		8.38				
09/12/21 09/13/21 09/14/21 09/15/21 09/16/21 09/17/21 09/18/21 09/19/21 09/20/21 09/21/21	KB KB		8.28				
09/22/21 09/23/21 09/24/21 09/25/21	KB KB KB		8.34				
09/26/21 09/27/21 09/28/21 09/29/21 09/30/21	KB KB		8.30				
Average: High: Low:			8.32 8.38 8.28				
DL/RL: Method: Limit1: Over/Total:	:		SM4500-H+ B	3/2 SM2320B	20/20 EPA 200.8	20/10 EPA 200.8	0.030/0.40 SM4500-NO3 D mx d <= 10 0/0

10/07/21 08:53:30 Page 6

State of California Water Resources Control Board Division of Drinking Water Coliform Reporting Form

Date of Report:	10/8/2021		System Name:	La Honda Water System (CSA #7)	System Number: 4100509
Laboratory: BEI Analytic	al Laboratory		Elap No:	3019	Signature of Lab Director:
Report Period from:	9/1/2021	to	9/30/2021	Sampler: Keefe Brennan	Employed by: Bracewell Engineering, Inc.

Collection Date	Laboratory Number	Bottle Number	Site Name or Street Address	Sample Type	Total Coliform	E. Coli	Remarks
9/14/2021			400 Ranch Road	1	А	А	SM 9223B-18
9/14/2021			Raw Water	4	365.4	42.8	SM 9223 B-18 (MPN)

1 = Routine

P = Present A = Absent

2 = Repeat

3 = Replacement

4 = Other

Monthly Summary of Monitoring For Surface Water Treatment Regulations

System Name: La Honda Water System (CSA #7)

System Number: <u>4100509</u>

Treatment Plant Name: La Honda Water System (CSA #7)

Month: September Year: 2021

Treated Water Turbidities Every Four Hours (NTU)*

Date Water Turbidity Water Unitary to 0400 to 0800 to 1600 to 2000 to Midnight Treated Water Ratio C. Ratio 1 1 1 1 1 1 1 100 100 2000 Midnight Water Ratio 2 1		Peak Raw	Peak Settled	Midnight	0400	0800	Noon	1600	2000	Average	Minimum
1 1 1 1 1 1 1 1 1 1 1 1 2 0.24 0.25 0.02 0.02 0.02 0.02 0.02 0.02 3.5 4 0.25 0.02 0.02 0.02 0.02 0.02 0.02 4.3 6 1 1 1 1 1 1 1 1 6 0.02 0.02 0.02 0.02 0.02 0.02 3.7 9 0.32 0.02 0.02 0.02 0.02 0.02 0.02 0.02 3.1 10 0.30 0.02 0.02 0.02 0.02 0.02 0.02 3.1 12 0.02 0.02 0.02 0.02 0.02 0.02 3.6 13 0.21 0.02 0.02 0.02 0.02 0.02 4.4 16 0.20 0.02 0.02 0.02 0.02 2.7 21 0.47 0.02 0.02 0.02 0.02 <	Data										
3 0.24 0.02	Date	Turbidity	Turbidity	0400	0800	Noon	1000	2000	wiidnight	water	Ratio
3 0.24 0.02	1										
4 0.25 0.02 0.02 0.02 0.02 0.02 4.3 5 0 0 0.02 0.02 0.02 0.02 4.3 6 0 0 0.02 0.02 0.02 0.02 0.02 7 0 0.18 0.02 3.1 10 0.30 0.02 0.02 0.02 0.02 0.02 0.02 0.02 3.6 14 0.26 0.02 0.02 0.02 0.02 0.02 0.02 4.2 15 0.20 0.02 0.02 0.02 0.02 0.02 4.2 16 0.20 0.02 0.02 0.02 0.02 0.02 2.3 21 0.47 0.02 0.02 0.02 0.02 2.3 23 0.25 0.02 0.02 0.02		0.24					0.02	0.02	0.02	0.02	2.5
5				0.02	0.02	0.02	0.02	0.02	0.02		1
6 8 0.18 0.02 0.02 0.02 0.02 3.7 9 0.32 0.02 0.02 0.02 0.02 0.02 0.02 3.7 10 0.30 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2.9 11 0.22 0.02 0.02 0.02 0.02 0.02 0.02 3.1 12 0.02 0.02 0.02 0.02 0.02 3.6 14 0.26 0.02 0.02 0.02 0.02 0.02 4.2 15 16 20 21		0.23		0.02	0.02	0.02				0.02	4.5
7 1 0.02 0											-
8 0.18 1 0.02 0.02 0.02 0.02 0.02 3.7 9 0.32 0 0.02 0.02 0.02 0.02 0.02 0.02 3.7 10 0.30 0.02 4.2 15 16 1 1 1 0.02 0.02 0.02 0.02 4.2 1 <td></td>											
9 0.32 10 0.02 <th< td=""><td></td><td>0.18</td><td></td><td></td><td></td><td>0.02</td><td>0.02</td><td></td><td></td><td>0.02</td><td>3.7</td></th<>		0.18				0.02	0.02			0.02	3.7
10 0.30 0.02 4.2 15								0.02	0.02		
11 0.22 0.02 0.02 0.02 0.02 0.02 0.02 3.1 12 0.21 0.02 0.02 0.02 0.02 0.02 3.6 14 0.26 0.02 0.02 0.02 0.02 0.02 4.2 15 0.02 0.02 0.02 0.02 0.02 4.2 16 0.02 0.02 0.02 0.02 4.4 18 0.02 0.02 0.02 4.4 19 0.01 0.02 0.02 0.02 4.4 20 0.47 0.02 0.02 0.02 2.3 23 0.25 0.02 0.02 0.02 0.02 2.7 24 0.24 0.02 0.02 0.02 0.02 0.02 2.6 25 0.02 0.02 0.02 0.02 0.02 0.02 3.3 26 0.02 0.02 0.02 0.02 0.02 0.02 3.3 29 0.25 0.02 0.02 0.02 0.02	10			0.02	0.02	0.02					
12 1		0.22		0.02							1
14 0.26 0.02 0.02 0.02 0.02 0.02 0.02 4.2 15 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
15 Image: standard structure Image: standard structure <td>13</td> <td>0.21</td> <td></td> <td></td> <td></td> <td></td> <td>0.02</td> <td>0.02</td> <td>0.02</td> <td>0.02</td> <td>3.6</td>	13	0.21					0.02	0.02	0.02	0.02	3.6
16 17 0.20 10 10 0.02 0.02 0.02 4.4 18 18 18 18 18 18 18 18 18 16 16 17 0.02 0.02 4.4 19 18 19 18 19 16 16 17 16 17 17 16 16 17 17 17 16 16 17 17 16 16 17 17 16 17 17 17 16 17 17 17 17 17 17 17 17 17 17 16 16 17 17 17 17 17 18 18 17 18 18 18 17 17 17 18 19 18 19 18 19 18 19 18 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10 10 10	14	0.26		0.02	0.02	0.02	0.02			0.02	4.2
17 0.20 0.02 0.02 0.02 4.4 18 0 0 0 0.02 0.02 4.4 19 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 21 0 0 0 0.02 0.02 0.02 0.02 2.3 22 0.47 0 0.02 0.02 0.02 0.02 0.02 2.3 23 0.25 0 0.02 0.02 0.02 0.02 2.7 24 0.24 0.02 0.02 0.02 0.02 0.02 2.6 25 0 0.02 0.02 0.02 0.02 0.02 3.2 26 0 0.02 0.02 0.02 0.02 0.02 0.02 3.3 29 0.25 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 30 0.16 0.02 0.02 0.02	15										
18 18 10 11 <th11< th=""> 11 11 <th< td=""><td>16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></th11<>	16										
19	17	0.20					0.02	0.02		0.02	4.4
20											
21											
22 0.47 0.02 0.02 0.02 0.02 2.3 23 0.25 0.02 0.02 0.02 0.02 0.02 2.7 24 0.24 0.02 0.02 0.02 0.02 0.02 2.6 25 0.01 0.02 0.02 0.02 0.02 0.02 2.6 26 0.02 0.02 0.02 0.02 0.02 0.02 3.2 28 0.23 0.02 0.02 0.02 0.02 0.02 0.02 3.3 29 0.25 0.02 0.02 0.02 0.02 0.02 0.02 4.0 30 0.16 0.02 0.02 0.02 0.02 0.02 3.8 31 0.02 0.02 0.02 0.02 0.02 3.8 31 0.02 58 No. of Readings ≤ 0.3 NTU: 58 % Readings ≤ 0.3 NTU = [(No. Readings ≤ 0.3 NTU) / (Total No. Samples)] x 100 = 100% Meets Standard (i.e. more than 95% of readings are ≤ 0.3 NTU) (Y/N)? Y Y Percent redu											
23 0.25 0.02 0.02 0.02 0.02 0.02 2.7 24 0.24 0.02 0.02 0.02 0.02 0.02 2.6 25 0.01 0.02 0.02 0.02 0.02 0.02 2.6 26 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2.6 26 0.47 0.47 0.02 0.02 0.02 0.02 0.02 3.2 28 0.23 0.02 0.02 0.02 0.02 0.02 0.02 3.3 29 0.25 0.02 0.02 0.02 0.02 0.02 0.02 0.02 4.0 30 0.16 0.02 0.02 0.02 0.02 0.02 0.02 3.8 31 1 1 1 1 1 1 1 1 1 4ve. 0.27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
24 0.24 0.02 0.02 0.02 0.02 0.02 2.6 25 1							1				1
25 Image: Constraint of the standard								0.02	0.02		
26 Image: Constraint of the series of t		0.24		0.02	0.02	0.02	0.02			0.02	2.6
27 0.47 0.02 0.02 0.02 0.02 3.2 28 0.23 0.02 0.02 0.02 0.02 0.02 3.3 29 0.25 0.02 0.02 0.02 0.02 0.02 0.02 0.02 4.0 30 0.16 0.02 0.02 0.02 0.02 0.02 0.02 3.8 31 0.02 0.02 0.02 0.02 0.02 0.02 0.02 3.8 31 0.02 0.02 0.02 0.02 0.02 0.02 3.8 31 0.27 0.02 0.02 0.02 0.02 0.02 0.02 *If a continuous monitoring turbidimeter is used, determine discrete turbidity value for the same times during each 24-hour period 58 % Readings < 0.3 NTU = [(No. Readings < 0.3 NTU) / (Total No. Samples)] x 100 =											
28 0.23 0.02 0.02 0.02 0.02 0.02 3.3 29 0.25 0.02									0.00		
29 0.25 0.02 3.8 31 Image: Constrained income the series of the same times during each 24-hour period Image: Constraint of the same times during each 24-hour period Image: Constraint of the same times during each 24-hour period Total No. of Samples: 58 No. of Readings < 0.3 NTU: 58						0.02					
300.160.020.020.020.020.020.020.023.831Ave.0.27Image: Constraint of the state of the same times during each 24-hour period0.02Image: Constraint of the same times during each 24-hour period*If a continuous monitoring turbidimeter is used, determine discrete turbidity value for the same times during each 24-hour periodTotal No. of Samples:58No. of Readings ≤ 0.3 NTU = [(No. Readings ≤ 0.3 NTU) / (Total No. Samples)] x 100 =100%Meets Standard (i.e. more than 95% of readings are ≤ 0.3 NTU) (Y/N)?YPercent reduction during the month = [(Average Raw NTU - Average Effluent NTU)]x 100 =92%				0.02	0.02						1
31 Image: Constraint of the standard											1
Ave. 0.27 0.02 *If a continuous monitoring turbidimeter is used, determine discrete turbidity value for the same times during each 24-hour period 0.02 *If a continuous monitoring turbidimeter is used, determine discrete turbidity value for the same times during each 24-hour period 0.02 Total No. of Samples: 58 No. of Readings ≤ 0.3 NTU: 58 % Readings ≤ 0.3 NTU = [(No. Readings ≤ 0.3 NTU) / (Total No. Samples)] x 100 = 100% Meets Standard (i.e. more than 95% of readings are ≤ 0.3 NTU) (Y/N)? Y Percent reduction during the month = [(Average Raw NTU - Average Effluent NTU)] x 100 = 92% (Average Raw NTU) $(Average Raw NTU)$ $(Average Raw NTU)$		0.10		0.02	0.02	0.02	0.02	0.02	0.02	0.02	3.0
 *If a continuous monitoring turbidimeter is used, determine discrete turbidity value for the same times during each 24-hour period Total No. of Samples: <u>58</u> No. of Readings ≤ 0.3 NTU: <u>58</u> % Readings ≤ 0.3 NTU = [(No. Readings ≤ 0.3 NTU) / (Total No. Samples)] x 100 = <u>100%</u> Meets Standard (i.e. more than 95% of readings are ≤ 0.3 NTU) (Y/N)? Y Percent reduction during the month = [(Average Raw NTU - Average Effluent NTU)] x 100 = <u>92%</u> (Average Raw NTU) 		0.27								0.02	
% Readings $\leq 0.3 \text{ NTU} = [(\text{No. Readings } \leq 0.3 \text{ NTU}) / (\text{Total No. Samples})] \times 100 = 100\%$ Meets Standard (i.e. more than 95% of readings are $\leq 0.3 \text{ NTU}$) (Y/N)? Y Percent reduction during the month = $[(\text{Average Raw NTU} - \text{Average Effluent NTU})] \times 100 = 92\%$ (Average Raw NTU)			turbidimeter is u	sed, determir	e discrete tu	urbidity valu	e for the sam	e times duri	ng each 24-hou		<u> </u>
% Readings $\leq 0.3 \text{ NTU} = [(\text{No. Readings } \leq 0.3 \text{ NTU}) / (\text{Total No. Samples})] \times 100 = 100\%$ Meets Standard (i.e. more than 95% of readings are $\leq 0.3 \text{ NTU}$) (Y/N)? Y Percent reduction during the month = $[(\text{Average Raw NTU} - \text{Average Effluent NTU})] \times 100 = 92\%$ (Average Raw NTU)	Total N	lo. of Samples:		58		No. of Re	adings≤ ().3 NTU:		58	
Meets Standard (i.e. more than 95% of readings are ≤ 0.3 NTU) (Y/N)?YPercent reduction during the month = [(Average Raw NTU - Average Effluent NTU)]x 100 =(Average Raw NTU)						-					
Percent reduction during the month = $[(Average Raw NTU - Average Effluent NTU)]$ x 100 = 92% (Average Raw NTU)	% Read	$P \text{Readings} \le 0.3 \text{ NTU} = [(\text{No. Readings} \le 0.3 \text{ NTU}) / (\text{Total No. Samples})] \times 100 = 100\%$									
(Average Raw NTU)		Meets Standard (i.e. more than 95% of readings are ≤ 0.3 NTU) (Y/N)? Y									
	Percent	t reduction durin	g the month =				e Effluent	<u>NTU)]</u> x	100 =	92%	

95th Percentile Value of all turbidity readings (95% of all turbidity readings are less than this value): 0.020

Incidents of turbidity greater than 1.0 NTU								
Date of Incident								
Value								
Duration								

 Total Number of incidents where turbidity is > 1.0 NTU:
 0

 Total Number of incidents where turbidity is > 5.0 NTU:
 0

 Meets Standards (i.e. NTU is not > 1.0 for more than eight consecutive hours) (Y/N)?
 Y

After placing a filter back into service after any interruption (e.g. backwashing), did the filter effluent comply with the following criteria:

a. < 2.0 NTU after all events (Y/N)?	Y
b. < 1.0 NTU after 90% of events (Y/N)?	Y
c. < 0.5 NTU after 4 hours (Y/N)?	Y

Indicate the date that the turbidimeters that are used for regulatory monitoring purposes were calibrated

	Which	Standard used	Date	Which	Standard Used
Date	Turbidimeter	(primary/secondary)		Turbidimeter	(primary/secondary)
3/13/2019	Hach, raw wtr	0/20 Formazin	3/13/2019	Hach, treated	0/20 Formazin
5/17/2019	Hach, raw wtr	0/20 Formazin	5/17/2019	Hach, treated	0/20 Formazin
7/15/2019	Hach, raw wtr	0/20 Formazin	7/15/2019	Hach, treated	0/20 Formazin
10/17/2019	Hach, raw wtr	0/20 Formazin	10/17/2019	Hach, treated	0/20 Formazin
4/3/2020	Hach, raw wtr	0/20 Formazin	4/3/2020	Hach, treated	0/20 Formazin
7/2/2020	Hach, raw wtr	0/20 Formazin	7/2/2020	Hach, treated	0/20 Formazin
10/28/2020	Hach, raw wtr	0/20 Formazin	10/28/2020	Hach, treated	0/20 Formazin
1/29/2021	Hach, raw wtr	0/20 Formazin	1/29/2021	Hach, treated	0/20 Formazin
4/22/2021	Hach, raw wtr	0/20 Formazin	4/22/2021	Hach, treated	0/20 Formazin
7/28/2021	Hach, raw wtr	0/20 Formazin	7/28/2021	Hach, treated	0/20 Formazin

Disinfection Process Data

Disinfectant residual type: free chlorine: combined chlorine: other (specify) Х Incidents of chlorine residuals less than 0.2 ppm at the plant effluent: Date of Incident Duration Date Dept. Notified Total number of incidents where residual is < 0.2 ppm: 0 Meets standard (i.e. not less than 0.2 ppm for more than four hours) (Y/N)? Y No. of distribution system residual samples collected: 1 No of distribution system samples for HPC only: Total No. residual and/or HPC samples collected: 1 No. of samples with no detectable residual and HPC is not measured: 0 No. of samples with no residual and HPC > 500 CFU/ml: No. of samples for HPC only and HPC > 500 CFU/ml: Total No. Samples with no residual and/or HPC > 500 CFU/ml: 0

Compute V where V = [1 - (Total number of samples with no residual and/or HPC > 500) / (Total number of residual and/or HPC samples collected)] x 100 =

100%

Meets Standard (i.e V > 95%) (Y/N)

Summary of Water Quality Complaints

General Complaints		
Type of Complaint	Number	Corrective Actions Taken
Taste/Odor	0	
Color	0	
Turbidity	0	
Suspended Solids	0	
Other (describe)	0	

Reports of Gastrointestinal Illness (Attach additional sheets if necessary):

Person Reporting	Date	Corrective Actions Taken

Attach explanation of any failure of the performance standards or operating criteria and corrective action taken or planned

Signature: Date:

Hog 17 Brace _____ 4 10/8/2021

Monthly Turbidity Report

Water Resources Control Board

3

0.81

0.56

1.00

1.45

State of California Drinking Water Program

March

April

May

June July

August September

Meets standard?

Running Annual Average (RAA):

(i.e. RAA \leq MRDL of 4.0 mg/L as Cl₂)

Year

Current

Quarterly Report for Disinfectant Residuals Compliance For Systems Using Chlorine or Chloramines

System Name: La Honda Water System (CSA #7) System No.: 4100509 2021 Quarter: Calendar Year: 1st Quarter 3rd Quarter 4th Quarter Monthly Ave. Monthly Ave. Number of Number of Month **Chlorine Level** Month Chlorine Level Samples Taken Samples Taken (mg/L) (mg/L) October 0.53 January 0.12 Previous Yr November 1.41 February 0.54 December 0.23 March 1.14 January 0.12 April 1.94 February 0.54 May 1.08

Comments:		
Signature: Log V Bacand	Date:	10/8/202

1.14

1.94

1.08

0.81

0.56

1.00

1.45

0.90

Yes

June

July

August

October

November

December

Meets standard?

Running Annual Average (RAA):

(i.e. RAA < MRDL of 4.0 mg/L as Cl₂)

September

Ē

	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)					
	April		0.36					
	May		0.31					
	June		0.12					
10	July		1.01					
7/12/2010	August		1.16					
7/1	September		0.69					
	October		0.53					
	November		1.41					
	December		0.23					
'ear	January	1	0.12					
Current Year	February	11	0.54					
Curr	March	1	1.14					
Rι	inning Annual A	verage (RAA):	0.64					
	eets standard? e. RAA <u><</u> MRDL of	Yes						

1

1

1

	2nd Quarter							
	Month	Number of Samples Taken	Monthly Ave. Chlorine Level (mg/L)					
	July		1.01					
ar	August		1.16					
Previous Year	September		0.69					
evior	October		0.53					
Ч.	November		1.41					
	December		0.23					
	January		0.12					
ar.	February		0.54					
t Yea	March		1.14					
Current Year	April	1	1.94					
ō	May	1	1.08					
	June	16	0.81					
Rι	inning Annual A	0.89						
	eets standard? e. RAA <u><</u> MRDL of	Yes						

Quarterly TTHM Report for Disinfection Byproducts Compliance (in µg/L or ppb)

System Name:	tem Name: La Honda Water System (CSA #7)							Syste	em No.:		4100509	9	Year:	2021		Quarter:		3	3	
Year:		20)17			2018				2019				20	20		2021			
Quarter:	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.
Sample Date (month/date):	3/13	6/15	9/25	12/13	3/26	6/13	9/12	12/19	3/5	6/19	9/11	12/17	3/10	6/9	9/8	12/1	3/1	6/14	9/8	
Site 1	86.0	38.7	142.1	98.3	123.4	96.1	56.8	135.1	79.5	62.5	115.2	104.6	61.2	40.0	39.0	67.0	38.0	71.0	53.0	
Quarterly Average	86.0	38.7	142.1	98.3	123.4	96.1	56.8	135.1	79.5	62.5	115.2	104.6	61.2	40.0	39.0	67.0	38.0	71.0	53.0	
Running Annual Average	77.7	79.8	90.2	91.3	100.6	115.0	93.6	102.8	91.8	83.5	98.1	90.5	85.9	80.3	61.2	51.8	46.0	53.8	57.3	
Meets Standard (80 ug/L)?*	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes												
Number of Samples Taken	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Identify the sample locations in the table below.

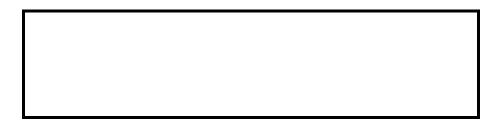
Site	Sample Location
1	Old Chlorination Station
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Llog / V Braund

10/8/2021

Signature

Date


*If, during the first year of monitoring, any individual quarter's average will cause the running annual average of that system to exceed the standard, then the system is out of compliance at the end of that quarter.

Quarterly HAA5 Report for Disinfection Byproducts Compliance (in μ g/L or ppb)

System Name:	La Honda Water System								System No.: 4100509				09 Year: 2021				Quarter: 3			3
Year:		20)17			20)18			20	19			20	20		2021			
Quarter:	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.	1st Qtr.	2nd Qtr.	3rd Qtr.	4th Qtr.
Sample Date (month/date):	3/13	6/15	9/25	12/13	3/26	6/13	9/12	12/19	3/5	6/19	9/11	12/17	3/10	6/9	9/8	12/1	3/1	6/14	9/8	
Site 1	66.1	25.0	71.0	40.0	45.6	61.2	24.6	45.9	46.0	44.3	64.0	83.5	101.6	69.0	29.0	32.0	25.0	55.0	19.0	
Site 1 Sample																				
Site 3																				
Site 4																				
Site 5																				
Site 6																				
Site 7																				
Site 8																				
Site 9																				
Site 10																				
Site 11																				
Site 12																				
Quarterly Average	66.1	25.0	71.0	40.0	45.6	61.2	24.6	45.9	46.0	44.3	64.0	83.5	101.6	69.0	29.0	32.0	25.0	55.0	19.0	
Running Annual Average	41.5	42.1	53.0	50.5	45.4	54.5	42.9	44.3	44.4	40.2	50.1	59.5	73.4	79.5	70.8	57.9	38.8	35.3	32.8	
Meets Standard (60 ug/L)?*	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	
Number of Samples Taken	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Identify the sample locations in the table below.

Site	Sample Location
1	Old Chlorination Station
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

Hog V Braund

10/8/2021

Signature

Date

*If, during the first year of monitoring, any individual quarter's average will cause the running annual average of that system to exceed the standard, then the system is out of compliance at the end of that quarter.